
Form Approved
REPORT DOCUMENTATION PAGE CMB No 07C.:-0188

SRE-S7R.C7hV; \1ARKAQ5

NON0

AD-A208 443 31_'. \V.7 DRE' ON, \P ,BL1 E

68 %c] Z A 1a ~NAM--O :MONTOR.: G ORCAZATG\%

S a e.~ d ar Z, P C,:c) r ADDRESS (Ciry, Sta te, and ZIP Code)

_riclt-Patterson AFB OHE~ 336S

3 5; D'. S I]O . CE syMED.. 9 PROC,:REME< , d.STR,VE%7 DENT ::CATO%
(if applicable)

5~%C,1--t?, a n aZP o 0> 1O SORCE C1; PLUNYNG NUV;:ER

:;ROGRA74 ZR.OJE'CT 7ASK. WO RK UN(IT
.ETN NO. NO ACCESSION NO.

itn,, uc,7 SecuJrt C,'d_:5hcation) U C A s ';
SOFTWARE MANAG~vNT INDICATORS:

MAAING TThE RISK OF PROJECT MANAGE~4ENT
7: _ESO.7.-T.QZ5 S

CAPTAIN COURT COLLINS ALLEN

C VE 70VRE 1$88 77 ~GEu

ERNEST A. SACOD 7s t, S T7

E::ccu 7ve Of f ccr, C n:a- ns -'-i n r
- -- -'-. 8 S .EEC7 TV2 (,cntinue on re~erso if necc~sary and ;denf:! ' y .DioCk number)

001

.~C .. .4I -

i. XI

SOFTWARE MANAGEMENT INDICATORS:
MANAGING THE RISK OF

PROJECT MANAGEMENT

by

CAPTAIN COURT COLLINS ALLEN

A.A., Colorado Mountain College, 1977

B.S., Fort Lewis College, 1979

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Management Science

and

Information Systems

1989

This thesis for the Master of Science degree

by

Captain Court Collins Allen

has been approved for the

Department of Management Science

and

Information Systems

by

Kenneth A. Kozar

Carroll W. Frenzel

DateJ1n6 . &

Allen, Court Collins (M.S., Management Science and Information
Systems)

Software Management Indicators: Managing the Risk of Project
Management

Thesis directed by Associate Professor Kenneth A. Kozar

-- Managing software projects continues to be a high risk activity.

Projects often end up out of control and result in cost and time overruns.

Projects could be better managed if managers were forewarned that a

project may be out of control before it is actually out of control. With

advance notice of changing risk factors, project managers can take

appropriate action to bring the project back on track and reduce prcject

management risk's impact.

To create this early warning system, an effort to develop a suite

of software management indicators has been evolving. Software

management indicators are equivalent to an information system for

software project management that predict project development process

quality or "health." This will allow managers manage risk associated

with software development efforts.

Software management indicators will be discussed and

explained. Since much of this work has been done by government

contractors in the United States, the focus will be to explain the use of

methods developed in this environment. Exploration of experiences

with these indicators will be shared. Qualit:tive research done by

querying promoters and users of these techniques will explain what

software rmanagement indicators are, why they should be used, when

they are appropriate, and implementation hurdles that need to be

cleared.

DEDICATION

To my incredibly understanding and loving family; my wife

Peggy Ann, my daughter Courtney Jane, and my soon to be born son,

whose conception interestingly coincided with the inception of this

project.

Acoession For

91TtS 10RA&I

DTIC TAR

2 r tia, i Qa--

S Avn, ',l, v o s
vi ig~>los

_ _ _ _ _ _ _ _

V

ACKNOWLEDGEMENTS

My sincere appreciation goes to Dr. Kenneth Kozar, whose

"humanized" and "discovery" approach to problem solving and learning

made this project a profound experience. His patience and subtle,

unassuming guidance over the last several years has allowed me to

professionally grow and mature beyond expectation. Additional

gratitude is extended to Dr. Carroll Frenzel and Dr. R.C. Mercure for their

reassuring and invaluable guidance and their unselfish time in reading

and criticizing this work.

vi

DISCLAIMER

The views, opinions, and/or findings herein are those of the

author and do not necessarily reflect those of the United States

Department of Defense. This document should not be construed as an

official Department of Defense position or policy unless so designated

by other official documentation.

Furthermore, whenever "man", or "men", or their related

pronouns appear either as words or parts of words (other than with

obvious reference to named male individuals), they have been used for

literary purposes and are meant in their generic sense.

CONTENTS

CHAPTER

I. IN TRO DU CTION ... 1

The Need for an Early Warning System 4

The Process Control Approach 9

Software Risk Management 10

Scope and Benefits of Research 15

II. SOFTWARE MANAGEMENT INDICATOR
LITERATURE REVIEW .. 17

Indicator Measurement .. 17

Care in the Use of Metrics .. 19

Software Product versus Process Quality 21

The U.S Air Force SMI Model 24

SM I Descriptions .. 26

Other Notes on SMI Usage 41

C onclusion ... 43

IlI. EMPIRICAL STUDY ... 43

Data Collection Methodology 44

Limitations of the Study .. 44

IV. RESEARCH FINDINGS ... 48

SMI Conventional Wisdom 48

Implementation Hints .. 53

V. SUMMARY AND CONCLUSION 59

_____________________________1

viii

Summary of the Research Findings 59

Recommendations for Future Research 61

REFEREN CES ... 63

APPENDIX

A. lNTERVIEW TOPICS .. 66

ix

FIGURES

Figure

1. Software Management Indicator; Computer Resource
U tilizatio n 7

2. The Tradeoff of Performance, Cost, and Time Project
T a rgets 10

3. Risk Management as a "Cocoon" that Embodies a
Software Development Project 12

4. A Software Risk Management Process; A Framework
from which to Employ the Use of Software Manage-
ment Indicators and Manage Software Development

R isk 13

5. Software Development Progress Indicator 27

6. Software Development Progress: Integration and Test
Software Problem Reports .. 29

7. Computer Resource Utilization Indicator: CPU, Memory,
and I/O Channel Resources ... 32

8. Software Personnel Indicator .. 34

9. Requirements Stability Indicator; Software Requirements
C hanges 36

10. Software Requirements Stability; Software Action Items...37

11. Cost/Schedule Indicator ... 39

12. Software Development Tool Indicator 40

13. Summary of the Empirical Study Interviews, Showing the
Distribution of Contact and Organization Types and
Numbers of People Interviewed 45

CHAPTER I

INTRODUCTION

Today's software development project managers are faced with

the overwhelming task of effectively managing the evolution ,' today's

information technology. They must integrate considerable past

investments with rapidly changing future technologies. Because of the

extraordinary demand for software, project managers are torn between

the desire to develop quality systems and the ccnflicting need to bring

new systems on-line quickly.

Because of these conflicting demands, managing software

projects continues to be a high risk activity. Project managers are faced

with increasingly complex system problems requiring complex system

solutions fraught with risk. Their actions must consider the complex

inter-relationships and wide variety of potential impacts on an overall

system. Frequently, the inherent risk will cause them to experience loss

of control, resulting in cost and time overruns. buccessful projects result

from effectively controlling this complexity along with numerous factors

that introduce risk and work against project success.

Consider the following statements that profess a softwa, e

project management control problem. Despite contrary examples of

large projects that may be considered successes, the "testimonials"

raise serious doubts about our ability to manage the scope and

2

complexity of many of today's software development efforts.

Although every DP (information technology] project faces
technical difficulties, they are not the major cause of project failures.
The truly dramatic failures are due to inadequate or inept project
management, which allows a project to run out of control like an
unsteered car on an icy road. With no one in the driver's seat, the
project. crasnes, its objectives unmet and its team left to scramble
from the scene of the disaster in the humiliation of defeat. (Page-
Jones, 1985, p.61)

Ken Orr (1985) in offering options to manage what he calls the

"Software Crisis" writes:

Information systems managers today face four monumental
problems: too much to do, too little time to do it in, too few good
people and too many options. Industry experts say there's a
software crisis, but in reality what exists is a software management
crisis.
(p. ID-2)

Comments by a recent Defense Science Board Task Force

(1987) on military software add further credence to these assertions:

Software plays a major role in today's weapon systems. The
"smarts" of smart weapons are provided by software. It is crucial to
intell;gence, communications, command, and control. Software
enables computerized systems for logistics, oersonnel, and
fin nce. The chief military software problem is that we cannot get
enough of it, soon enourih, reliable enough, and cheap enough to
meet the demands of weapon systems designers and users.. .We
are convinced that today's major problems with military software
development are not technica; problems, but management
problems. (p. 6)

Not to belabor the point, Cooper (1978) provides more insight

into the deficiency of software project management:

Per; aps this is so because computer scientists believe that
management per se is not their business, and the management
professionals assume that it is the computer scientists'
responsibil:ty. (in Abdel-Hamid and Madnick, p. 2)

The fact there are so many presumed successful computer

3

systems in use today may tempt one to minimize these assertions. It

could be said that even though there is an aura of success about these

systems, they probably had problems and could have benefited from

better software development management.

These comments may suggest that software development in

some "non-military" environments has reached a level of complexity

found in many defense systems. If so, there consequently is a need for

more managerial sophistication and control. In other words, old

software project management techniques, when used, seemingly are no

longer working and must be improved to parallel advances in software

development "technology".

Poor software quality due to these alleged software

management deficiencies can result in major losses of money, property,

or life. The tiniest software "bug" can "crash" the biggest of systems.

Complex accounting, medical, real-time and military systems are

especially vulnerable to these LUyfts (Davis, 1987).

Poor project management control has resulted in numerous

cases of software project cost overruns, performance shortfalls, and

schedule delays; all ingredients for project failure and poor software

quality. While it is tough trying to control the quality of any complex

project, doing it for these increasingly complex software projects seems

to be even harder.

With these critical problems and consequences, a big question

arises. How can we use today's management approaches to manage

the complexity and project risk forecasted for the future which includes

4

the Strategic Defense Initiative (SDI), a project of greater magnitude

than previous systems projects?

This study will look at a process control/quality assurance and

risk management approach that utilizes software management

indicator to provide early signals of an out of control software

development process. Understanding and using this "total quality

control" and risk management process could ultimately enhance

software quality, timeliness, and fulfillment of expectations at optimal

cost.

The Need for an Early Warning System

What is necessary is an "early warning system" providing the

information, "alarm signals", critically needed to continually monitor and

control the software development process and to assess the project's

overall "health". These alarm signals are "symptoms"; observable

phenomenon which result from "causes" and arise from and accompany

a "defect" in the software development p . A "remedy" is a change

that can successfully eliminate or neutralize a cause of the defects.

(Juran, 1980, p. 104).

This "early warning system" should be a part of an overall

Project Management Information System (PMIS), or in another view, a

Quality Information System (QIS). Whatever it may be called, with

software becoming so critical to over-all system success, project

managers must carefully track the quality of the development process

and continually re-assess its dynamic risk factors. The "process" in the

software development sense, is merely the software development

5

methodology being employed.

Informally, one might think of early warning indicators or

symptoms as "feelings" or intuitions that things are or are not going as

planned, that things are out of control. In a more formal sense they are

measurements of attributes that when synthesized with historical

information and experience give one a more "quantifiable" information

for a notion that things aren't right.

Many complex software projects are managed with

sophisticated project management and software engineering

methodologies like work breakdown structures, PERT networks and

prototyping. These approaches provide management control feedback.

Many times the feedback from these methods isn't early enough and

frequent enough nor appropriate to assess whether a project is out of

control before it is too late.

The impact of unplanned surprises is particularly threatening.

A project in control is one in which the number of surprises along the

way is minimized (DeMarco, 1982, p.5). By establishing and tracking

indicators that feedback early information that a project may be

proceeding out of control, is one way to reduce project threatening

surprises. With enough notice, many times project managers can take

timely corrective action.

Essentially, the indicators 'raise a flag' for project management.

The 'flag' says things are not going quite as planned and that something

may be wrong and need changing. The indicators are merely a stimulus

for management action. The goal is to know about the problems at early

6

"inchpebbles" rather than at a major "milestone".

Formal indicators are commonly used in economics. There are

leading, lagging and coincident economic indicators that have been

chosen based on their historical relationships with economic trends. By

measuring and collecting economic data, these relationships are used

to provide early warnings on how the current economic "process" will

affect future economic performance. Indicators used for software

development management are based on similar principles.

As a simple case in software development, consider a

programmin§ staff that has started coding a software system before

there is a final design or even worse a complete requirements analysis.

Most managers historically know there is a real good chance the project

will have serious problems.

Suppose, more subtly, experience has shown a direct

correlation between the number of compiler diagnostic messages and

the number of modules that will not pass integration testing. If measured

and statistically analyzed early enough, management can work to

determine causes and initiate remedies long before the integration

stage of the project. The sooner project management can do this, the

less costly and time-consuming the changes.

As a more explicit example, software development experience

has shown requirements changes will tend to cause growth in the

amount of system hardware memory needed. It is common to specify at

least 50 percent spare memory in systems to allow for future

enhancements. Figure 1 is an applicable indicator that tracks the

7

increases in memory needed versus the amount of spare memory that

was allowed for the hardware.

Note around contract month 18 as the memory utilization crept

toward and surpassed the 50 percent spare threshold, management

was alerted and took action. Management decided requirements

changes needed re-evaluating
W
0

UJ
Li

96K
CC 0 - J

'< c
2 > 50 ---------- 64K

0
Z, 25 32K 2

0
15 16 17 18 19 20 21 22 23 24 25 26

Contract Month

LEGEND:
100 Percent Growth Resource Requirement

Planned Deliverable Resource

×xxx. 50 Percent Spare

Memory Utilization
Figure (1): Software Management Indicator; Computer Resource

Utilization, (Adapted from AFSCP 800-43, p. 5)

as indicated by the downward trend in the memory utilization plot. They

also decided more memory be purchased as indicated by the quantum

jump in planned deliverable resource at contract month 18. In both

cases, management had better and early information from which to

8

operate and make critical project management decisions.

As shown, indicator information is normally depicted

graphically. Figure 1 shows metric measurement data representing
"actual" growth plotted against planned spare memory. From this

summary, "instantaneous" data points can be represented "over time"

and be extrapolated into the future to identify developing trends and

routinely be fed into the risk management system.

The quality and timeliness of the managerial decisions

depends in large part on the quality and timeliness of information.

Decisions involve cost and cost estimating, schedules, product

performance (quality, reliability, maintainability), resource commitment,

project tasking, trade-offs, contract performance, and total system

integration (Cleland and King, 1983). Projects are unique and so is the

information required. It is therefore necessary to create a "quality

control" and risk management information system that meets the

project's unique needs. This is so project managers have the exact

information they need to make informed, timely decisions that will keep a

project progressing as originally expected.

These examples only briefly look at the types of things a

software project manager can track informally or formally. What is

needed is a concise, understandable, reliable, and manageable

collection of these "key" management indicators. In a sense, these are

"key success factors" that will be measured, tracked and assessed for

use in these managerial decisions. Such a formal suite of software

management indicators will be discussed in greater detail in the next

9

chapter.

The Process Control Agproact

The ultimate yardstick by which the software is judged is

whether it "works" and is "usable". Juran (1980) describes quality as

"fitness for use" and a "defect" as any state of unfitness for use. Software

containing bugs is defective. These defects cause a program to behave

unpredictably and consequently render it unfit for use. The better the

control of the "process" by which the software "product" is produced, the

better the chance it will be fit for use. In other words, management

should be as much concerned about the quality of the "process" as they

are about the quality of the "product".

This is the process control approach to attaining quality. The

principles of process control in engineering are known by a variety of

names such as quality control, total quality control, zero defect, statistical

quality control, quality assurance, and quality information systems.

When taken as quality assurance, Juran (1980, p. 516) feels

"assurance" results from information that secures against some kind of

disaster or risk. The information serves two purposes:

1. To assure the recipient that all is well, e.g., the product is fit

for use; the process is behaving normally; and the procedures are being

followed.

2. To provide the recipient with e lwarnng that all is not well

and that some disaster may be in the making. Through this early

warning the recipient is placed in a position to take preventive action to

avert a disaster.

10

Software Risk Management

Performance attributes of software determine how functional it

is. Given enough time and enough money, most system performance

requirements can be met. But, resource constraints demand that a

balance between tradeoffs in schedule (time), performance (function),

and budget (cost) be precisely managed by the project manager. Figure

2 shows how the required (ideal or desired) performance must compete

and be traded-off with the conflicting goals of time and cost to meet an

overall project target.

PERFORMANCE

Required Performance

BudgeLLimit

COST

TIME (SCHEDULE)

Figure (2): The Tradeoff of Performance, Cost,

and Time Project Targets, (Adapted from Meredith and Mantel, 1985)

Most project managers are aware their projects involve a

degree of ignorance and uncertainty to meet these cost, schedule,

follow-on support, and technical performance objectives. Zmud (1980)

feels to achieve more effective management of software development,

11

the amount of and ignorance uncertainty related to these objectives

must be reduced within the project, and the information flow to decision

makers confronted by the uncertainty must be facilitated. Their job is to

identify and control the risk drivers resulting from the uncertainty.

Risk management is the way to reduce uncertainty and better

manage the risk that threatens software system development. By

systematically managing changing risk drivers, the threat to meeting a

project's objectives will be optimized. Figure 3 depicts risk management

as a "cocoon" which embodies the project. The process acts as a filter

for software project management risk drivers while the project is

"metamorphosing". Software risk management is an integral part of this

overall systems integration approach.

As Figure 3 suggests, project risk can be partitioned into

Performance, Cost, Schedule, and Support risk components. Each

component of risk is influenced by risk drivers that cause the

probabilities of cost, schedule, performance, or support risk to fluctuate

significantly.

Figure 4 graphically depicts a formal software risk management

system. This particular system was devised by the U.S. Air Force

Systems Command (AFSCP 800-45). It provides the framework in

which the use of software management

12

RISK RISK

PROJECT
MANAGEMENT SYSTEM

RISK MANAGEMENT
SYSTEM

Fiqure (3): Risk Management as a "Cocoon" that Embodies a Software
Development Project

13

2E
U, 0

z M E.

.2 -Z

00

(D 0 Cr-

C I

LLD 0
cu E
C a) C

W CU -n/0

14

indicators are used. Those seeking more detailed information on the

approach should see the reference. Briefly the processes are:

1. Determining whether there's a r'.ed for software risk

management.

2. Identifying software risk components.

3. Analyzing risk component drivers.

4. Developing risk handling options.

5. Controlling risk drivers.

6. Iterative re-assessment throughout the system life cycle.

The software risk management system is designed to be an

integral part of an overall-system risk management program. The

system is an iterative process lasting throughout a systems development

life cycle. It requires project managers to regularly assess baseline

project objectives for risk that might increase the probability they won't

be met.

The risk management system is used to gain perspective of the

magnitude of the cause and effects of changes, to develop options, and

to make decisions to enhance the visibility and control of a project's

progress and final outcome. Visibility offers more insight and control

reduces the difference between plans and reality. These objectives can

be attained by improving communication and by using these more

disciplined, systematic management techniques to proactively control

expectations throughout the software life cycle. As shown in Figure 4,

software management indicators are devised to provide critical

information for the estimates and evaluations that drive the risk

15

management process.

Scooe and Benefits of Research

This research examines the role of software management

indicator in a quality control and risk management approach to

enhancing management of large-scale software development projects.

The complexity of this subject area is no less complex than the process

of developing systems. Certainly, there are those whose expertise iS far

beyond that represented in this paper. An attempt is made to

understand, integrate, and represent this expertise.

This effort will benefit the information management community

by ailowing wider dissemination of existing software management

indicator knowledge. Recent work by the U.S Air Force that compiled a

suite of Software Management Indicators (SMIs) will be used to

represent the "state of the art" of this knowledge (AFSCP 800-43, 1986,

ESD-TR-88-001). Although the work is biased toward military systems,

there is applicability to all types of systems developments. It is hoped

that this re-statement of the SMI principles will help clarify and stimulate

their use and spur new directions and insights.

Preliminary research traced and established the historical and

conceptual roots for using the suite of Software Management Indicators.

It involved reviewing and abstracting literature on: the systems

approach to management; systems engineering and project

management systems; risk management systems; computer system

development systems; quality/process control; and the conceptual

16

foundations of software metrics measurement.

The question is, does the use of SMIs help "grease the

passage of software through the life cycle"? That is, does using SMIs as

an "early warning system" in conjunction with software risk management

help manage and control the complexity and risk in software

development projects before they are out of control. If so, it is felt the

ultimate quality of the software system will be improved.

An exploratory study was devised to qualitatively pursue this

question. The study involved interviewing government and contractor

authorities who have worked on large scale software development

projects using SMIs. Interview questions were posed and solicited with

a focus on validating the SMI use in quality control and risk

management.

The questions also sought to identify policy and

implementation issues, tangible and intangible benefits, problem areas,

and recommendations for change. Although not the primary thrust of the

research effort, pertinent findings that suggest further research needs

and opportunities were also sought.

The next chapter will take a more detailed look at indicator

principles and U.S. Air Force suite of Software Management Indicators.

The suite will be used because it represents a corcerted attempt to

summarize many independent efforts and thoughts. Reviewing them

should lead to better understanding of the current SMI concept. This

understanding can then serve application of the concepts to other

similar non-military environments.

CHAPTER II

SOFTWARE MANAGEMENT INDICATOR
LITERATURE REVIEW

In this chapter, there will be a cursory review of indicator

measurement fundamentals and precautions. Significant, topically

related, prior efforts will be identified and briefly discussed. A detailed

presentation of the U.S. Air Force SMI model, which synthesizes much

of this work, will then follow.

Indicator Measurement

Metrics are measurable attributes or indicators that can support

some quantitative aspect of a system for comparisons and evaluations.

Many types of attributes can be measured. Once defined as measures

for software management indicators, the metrics must have meaning in

terms of "indicating" project process quality and changing risk trends. In

this context it is key these indicators offer "assurance information" to

management from which reasonable assessments and predictions are

made of the performance of the software development process. To

provide "early warnings" as a project progresses, metric measurement

data is frequently collected and compiled.

DeMarco (1982, p. 54) distinguishes between result and

predictor metrics. Rlt metrics may include total cost, total manpower,

or total elapsed time. Predictor metrics would include "early noted"

18

indications that have a strong correlation to some later observed result,

such as the number of early unplanned staff losses and future design

schedule problems.

Analysis of metric/indicator data requires comparison with

some "standard" that originates from project planning and risk analysis

or from historical studies/experience. Today's software project planning

will typically incorporate an estimating model similar in principle to

COCOMO (Boehm, 1981). The model produces various estimates of

how the software development project will progress over time. These
"planned" estimates are used to compare and assess "actual" project

performance. Similarly, historical studies and past experience provide

some "guideline" or "rules of thumb" of what can be expected if the

current project has qualities similar to those found in previous efforts.

Birrell (1985) gives examples of three cases that distinguish

between indicators which are compared against plan and those which

are compared against historical data.

1. An indicator that can be compared directly against the

A good example of this is the measure of the progress of a
work package (deliverable or module) against the project plan.
This can be the difference between the actual date of completion of
the work package and that required by the plan. By aggregating
measurements of all of the project's work deliverables, there is an
indication of the overall health of the project. A cost/schedule
"earned value" system is typical of this type of indicator (See for
example, Meredith and Mantel, 1985, pp. 296-297, 325).

2. An indicator that can be compared against olan by the use

of historical data.

19

Consider the amount of design documentation as an indicator
of possible computer memory problems. If there is an estimate
contained in the project plan, then Case 1 would apply. Otherwise,
the measurements might have to be converted to another
measurement that can be compared to historical data. e.g. lines of
code produced as a function of the amount of design
documentation.

3. An indicator that can only be compared against historical

In this case consider a work package which is being tested.
During testing each error detected is recorded. Once testing is
done, the total number of errors detected per line of code is
recorded as an indicator for the package. Assuming the project
plan doesn't have a planned number of errors per work package, it
may be compared to historical data available from past efforts.

Care in the Use of Metrics

Devising metrics to be measured is a difficult process.

DeMarco (1982, p. 52) feels there are no such things as metrics that are

independent of the conscious influence of project personnel. With this

he restates Heisenberg's Uncertainty Principle as:

Measuring any project parameter and attaching evident
significance to it will affect the usefulness of that parameter.

In other words, if project members know what is being counted

to measure a certain goal, they will tend to attach significance to it at the

expense of others. DeMarco (1982, p. 58) extends this to say if you

assign a dozen (often conflicting) goals, and only measure the

performance of one, then, expressed as The Metrics Premise:

Rational, competent men and women can work effectively to
maximize any single indication of success.

A frequently cited programming experiment performed by

Weinberg-Schulman (1974), offers a good example of this goal conflict.

20

When five different teams were given their own goal to maximize, it was

found that they did it at the expense of the others. Boehm (1981, p.21)

thinks the following conclusions can be reached from the experiment:

1. Programmers have very high achievement motivation.

2. Different software objectives conflict with each other in

practice.

3. Successful life-cycle software engineering requires

continuing resolution of a variety of important but conflicting goals.

Capers Jones (1986, p.5) feels the measurement of software

programming has been the weakest link in the whole science of

software engineering. When common metrics used for programming are

analyzed under controlled conditions, he suggests three paradoxes

result:

1. Lines-of-code measures penalize the conciseness of high-

level languages and tend to be inversely proportional to productivity

increases.

2. Cost-per-defect measures penalize high-quality programs

and Flways are inversely proportional to quality improvements.

3. Ratios established for programming subactivities such as

design, coding, integration, or testing often move in unexpected

directions in response to unanticipated factors. That is they can be

unpredictable.

Denicoff and Grafton (1981) argue metrics for the measurement

of established science and engineering disciplines are based in the

"laws" of physical nature (e.g. temperature, weight, area). In contrast,

21

measurements in computer science and software engineering depend

on the ingenuity of the humans who can devise useful measures.

Denicoff and Grafton (1981) further suggest software

engineering doesn't suffer from the number of metric measurement

proposals. The problem with many metrics is they are commonly used

out of necessity without benefit of a deep understanding. They feel that

software and computer science as disciplines have more in common

with economics, psychology, and political science than with the physical

sciences. These disciplines also struggle with the problems of

measurement which may stem from dealing with measuring human

activities.

The availability of metrics, in itself, will not necessarily assure

computer software development the status of a science. Denicoff and

Grafton (1981) feel "quantitative" evaluation techniques are necessary

for the evolution of software from an art to an engineering discipline.

The message should be clear. Measurement of the software

development process is still immature and slowly evolving. The

measure of most successful systems is whether "it works". Many of the

commonly used metrics were developed to measure these more

technical performance aspects of software; essentially its quality. There

has been a strong tendency not to measure and assess the quality of

managing the process life cycle toward attaining that performance.

Software Product versus Process Quality

Typical use of metrics in software quality control has been in

the realm of attempting to measure and assess software "product"

22

quality. These types of measures represent the majority of prior effort

and use of software metrics (see for example Birrell, 1985; Boehm,

1981; DeMarco, 1982; Gilb, 1977; Jones, 1986; and Perlis, 1981).

In Gilb's (1977) book, Software Metrics, he contends his work

represents the first attempt to describe the then emerging technology of

software metrics. He does acknowledge another preceding TRW

Systems publication (TRW-SS-73-09, 1973), Characteristics of Software

.Quity, whose principal author was Barry Boehm, as a "remotely

comparable" work. Boehm (1976) traced software metric work back

further to a paper by Rubey and Hartwick in 1968. Other work by Boehm

(1978, 1981) and Kosarajo and Ledgard (1974) prove to be the

fundamental foundations from which many of today's indicator concepts

have evolved.

Simultaneous work by DeMarco (1982) also uses the concept

of metrics measurement in software development. It is here, factors of

quality and indicators of quality are distinguished. Factors of quality

include such measures as software correctness, flexibility,

interoperability, portability, and reliability. Indicators of quality measure

parameters such as design structure, defect density, test coverage, and

documentation. Both categories attempt to measure the quality of the

product.

The problem with these "traditional" measures of software

quality is that they look at the product without considering the quality of

its development methodology. Software Management Indicators (SMIs)

what are used to measure this development process.

23

Unlike "hardware", successful management methods used to

specifically assess the quality of an ongoing software development

process have been informal and not widely known and disseminated.

There has been an effort by the United States Department of Defense

(DOD) to compile, synthesize, and standardize these methods with other

metrics measurement principles. The DOD feels it must create a more

formal early warning information system for managing their large and

conplex software development projects. The goal is to "formalize" ways

that better predict project management "health" and to better manage

the risk associated with software development efforts. Even though

many of the techniques have informally been used for some time, until

only recently (1982) has there been work to summarize and formalize

them.

This U.S Air Force (USAF) Systems Command (AFSC) project

surveyed government agencies and contractors to gather management

techniques and "lessons learned" from successful software development

efforts. A "suite" of Software Management Indicators (SMIs), that are an

early warning information system, have evolved from this work (AFSCP

800-43). They represent an attempt to more formally help project

managers evaluate the effectiveness of the software development

management process.

Other related work of significance, Software Management

Metrics, is an active implementation by the AFSC Electronic Systems

Division (ESD) of some of the preliminary indicator work from the Air

Force effort and contracted work by the MITRE Corporation (ESD-TR-88-

24

001, 1988). This most recent ESD/MITRE work is based on a previous

MITRE publication, Software Reporting Metrics, authored by T.F.

Saunders.

In the following section, there will be a detailed look at these

SMI suites. Details and descriptions of the indicators have been

liberally extracted from these sources (AFSCP 800-43, 1986; ESD-TR-

88-001, 1988). From researching the software management indicator

approach, it is felt this "model" represents the "state of the art". It best

summarizes current, less formal and standardized, efforts across the

defense industry.

The U.S Air Force SMI Model

The SMI efforts presented here were developed to improve the

software management capabilities of DOD project managers and their

counterparts in industry. The overriding goal is to improve visibility into

and control of the software development process and thus better

manage software development complexity and risk.

The following are other Air Force goals and objectives for the

SMIs:

1. Have indicators that cover all phases of the software

development life cycle

2. Present indicators that provide management visibility into

critical success concerns.

3. Develop indicators easily used and analyzed to identify

potential software development problems.

25

4. Create an effective risk management and control tool for top

level project management. i.e. management at the overall system level.

The Air Force Systems Command has identified six overall

SMIs, each with several supporting metrics. By no means does this

model represent the definitive SMI model. It only represents one attempt

to standardize many ways of approaching software management

indicator measurement. Each indicator will be discussed in detail and

supported with a graphic example and some "rules of thumb" regarding

their interpretation and use. Before this detailed description, there will

be a brief overview of the indicators and metrics as outlined in AFSC

Pamphlet 800-43. They are:

1. Software Development Progress indicator metrics that track

development progress by plotting the actual number of software units

designed, coded and tested, and integrated against a project plan.

(Note: A Q= is a Computer Software Configuration Item; a "logical"

grouping of software modules or Computer Software Units (CSUs), a

"sub-system" that is managed as a whole). Metrics include: CSCI Unit

Design Progress, Code and Test Progress, Integration and Test

Progress, and Formal Qualification Test Progress.

2. Computer Resource Utilization metrics which intend to show

whether the utilization of planned computer hardware resources is

approaching pre-determined "spare"/growth limits. Metrics include:

CPU Utilization, Memory Utilization, and I/O Utilization.

26

3. Software Manpoower metrics attempt to show a project is

proceeding according to planned staffing profiles. Metrics track numbers

of Total Staff, Experienced Staff, and Unplanned Staff Losses.

4. Reeuirements and Design Stability metrics track the stability

of requirements by measuring the numbers of requirements change

proposals and software problem reports. The metrics are:

Requirements Stability, and Design Stability.

5. Cost/Schedule Deviations provide a mechanism to track

cost, schedule, and technical performance baselines. A commonly used

methodology is C/SCSC (Cost and Schedule Control Systems Criteria

for Contract Performance) "earned value" analysis techniques used in

many govermment projects (see for example Meredith and Mantel, 1985,

pp. 296-297, 325 or DOE/CR-0015, 1980).

6. Software Development Tools availability is crucial to

understanding whether the proper software tools are available as

needed for development and testing. Metrics track tools required and

their availability dates in the Software Engineering Environment, and

Software Test Environment.

SMI Descriptions

1. Software Development Progress indicators are designed to

monitor the ability to maintain development and test progress. They

measure the degree to which software unit design, code, test and

integration is on schedule. Figure 5 depicts one way Software

Development Progress metrics can be plotted.

27

100 CSCI DESIGN
COMPLETION

CSCI UNIT TEST
COMPLETION

W0 CSCI INTEGRATION
CL COMPLETION

25-

15 16 17 18 19 20 2122 23 24 25 26
Contract Month

- ACTUAL
- PLANNED

Figure (5): Software Development Progress Indicator,

(Adapted from AFSCP 800-43)

la. CSCI Unit Design Progress tracks the engineering design

effort by tracking the percentage of computer software units for the CSCI

that have been successfully designed. The metric measures:
(UNITS 100% DESIGNED)/(TOTAL UNITS PER CSCI)X100%

A software unit is considered successfully designed when it

has been submitted for coding and unit testing. The graph plot of the

indicator should show the planned and actual percentage of completed

units versus a corresponding schedule. As is shown in Figure 5, a

healthy program will experience an exponential growth in modules

designed. This is reflected in the indicator's plot up until contract month

18 when the design process "levels off.". Erratic progress indicates

problems with managing the design process and can be attributed to

such things as worker experience levels, misunderstanding of

requirements, and volatility of requirements.

28

1 b. CSCI Unit Code and Test Proaress tracks the unit coding

and testing effort by indicating the percentage of CSUs for the CSCI that

have been successfully tested. A software unit is considered

successfully tested when it has met its design requirements. The metric

for the indicator plots:
(UNITS 100% CODED:TESTED)/(TOTAL UNITS PER

CSCI)X1 00%

The plot of the indicator should show the planned and actual

percentage of tested CSUs against schedule. Figure 5 shows, for a

normal program, the total number of sofware units that have passed unit

test and the total number of units that have been integrated should be

increasing linearly and constantly. Changes of more than 10 percent

should be addressed. The example shows starting at contract month 19,

there was a "plateau" in unit test completion for two months. This is a

notable "early warning". The effect in the integration completion metric

is shown as a plateau starting soon after the unit test process faltered.

1c. CSCI Integration and Test Progress tracks the CSU

integration process to predict when the overall CSCI will be available for

formal qualification testing. The indicator metric measures:
(UNITS 100% INTEGRATED INTO A CSCI)/(TOTAL

UNITS)X100%

As with the previous indicators, it plots planned and actual

percentage of completed integrated CSUs versus the schedule.

Another metric plot, such as Figure 6, tracks the number of open

software problems, Software Problem Reports (SPRs), and the "density"

of the discovered errors (number per thousand lines of source code).

Ideally, the number of new problems during the testing phase should not

29

be generating faster than old ones can be resolved. If the plot of open

SPRs is positive, as is the case for the first few months in Figure 6, then

proolems are being identified faster than can be resolved.

Note, schedule slips in the completion of software testing may

be estimated by observing the trend of the open SPRs. If the number of

new and open SPRs is increasing as the test completion milestone is

approached, then management will need to take action. An aggressive

test schedule may be forcing testing and thereby be preventing the

number of open problems from decreasing until all tests have been

performed. This will probably lead to problems that get increasingly

worse until all tests can be completed.

400 - 20

C,
300 -15

cn

U) 200 10
C,,

100 5 0

0 _ _ _ _ _ 0
15 16 17 18 1920 2122 23 2425 26

Contract Month

New SPRs SPR= Software Problem
--- Open SPRs Report

SPR Density
Figure (6): Software Development Progress: Integration and

Test Software Problem Reports, (Adapted from AFSCP 800-43)

Software Problem Report density is considered "normal" when

between 8 and 30 SPRs/1000 SLOC (Source Lines of Code). Too few

30

SPRs may indicate poor testing and too many indicate poor software

code quality.

Id. Formal Qualification Test Progress plots the success and

failure of the qualification tests conducted against the CSCI. It tracks the

number of test procedures schedulea and the number of test s that

passed. It should be "expected" that no problems will te uncovered

during the testing, but commonly programs experience schedule slips

and failed tests. It will give indications of whether the test program is

going to take longer than planned.

Rules of Thumb. Some rules of thumb for this Development

Progress indicator could include:

(1) Units tested and iitegrated should progress at a uniform,

not sporadic, rate and according to plan. Sporadic development may be

caused by factors such as overutilized development computers or

under-experienced staff. This results in a high-pressure environment in

which all software becomes due at once. For a "well-run" program, the

indicator plots should each rise with a fairly constant slope.

(2) Completion of designed units shoud begin once about 25

percent of the total allotted time has passed. Experience has shown that

increases in design effort may lead to reduced integration 3nd test effort

and higher quality products (ESC-WP-27367, 1987, p.28). In other

words, if an attempt is made to save time on design and code activities,

the savings will be more than offset by delays in testing and integration.

(3) At 80 percent of design, 50 percent of the "esign should be

complete.

31

(4) Expect a linear completion rate during a code and the unit

test phase. For example, at 25 percent of testing schedule, there should

25 percent completion of coded units.

(5) The number of SPRs is an indication of testing adequacy

and of code quality. A range of 5-30 SPRs/1000 Source Lines of Code

is "normal". In either case, the code may still contain a large number of

undetected errors.

2. Computer Resource Utilization indicators provide tracking

and assessment mechanisms that show the resource use, and spare

capacity available for each computer hardware resource; CPU,

Input/Output, and Memory. This ensures the software design will fit

within the planned resources, and that adequate spare capacity is

available to permit enhancements over the system's operational life.

The basis of this indicator is the computer resource utilization

requirements outlined in the system specification. In essence the

utilization baseline represents a "budget" of hardware resource

available to the designers. Figure 7 shows a planned 50 percent spare

for all three resources (Figure 1, in the previous chapter is another

version of plotting this metric).

32

100 -

75 - . Replanning

PLANNED SPARE

I I I I I i I i i I i

15 16 17 18 19 20 2122 23 2425 26
Contract Month

- CPU

MEMORY
o I/O CHANNEL

Figure (7): Computer Resource Utilization Indicator: CPU,
Memory, and I/O Channel Resources, (Adapted from ESD, 1988)

Notice how each plot has a positive slope. Most development

programs experience this upward creep in the estimate of resources

needed. This creep is attributed to maturity and/or changes of

requirements and design. In one study the average growth in utilization

was 66 percent (ESD-WP-27367, 1987, p.9). If the creep exceeds some

predefined spare, management action is required and might include the

following: resource expansion, requirement growth curtailment,

requirement reduction, software redesign, and possibly no action. The

example shows at month 23 management decided to upgrade the

hardware, perhaps by using a faster CPU.

Rules of Thumb.

(1) CPU, Input/Output, and planned Memory utilization should

allow a minimum of 50 percent spare.

33

(2) Performance deteriorates, for example, when utilization

exceeds 70 percent (for real-time applications).

(3) Resource utilization tends to increase with time. Plan for

this expansion early in the software development cycle.

(4) Schedule, cost management, and adherence to

development standards deteriorate dramatically as the spare resource

drops below 10 percent. Software development costs and schedules

increase dramatically as computer resource utilization limits are

approached and optimizing forces design and coding changes.

3. Software Manpower is monitored to assess whether a

project can keep qualified development staff committed as planned.

Counts of unplanned personnel losses are maintained so that work

force stability can be tracked. A program that begins with too few

software personnel or that attempts to bring too many on board at the

last moment (the "Mongolian herd" syndrome) is in trouble.

As Figure 8 shows, Total Staff, and Experienced Staff planned

versus actual numbers are plotted. It is commonly felt that a successful

project will use at least a ratio of total to experienced personnel should

be near 3:1 and never exceed 6:1. An experienced individual is

considered to have at least five years experience in software

development and at least three years experience in development of

applications similar to the current project. The example shows this

criteria being met, with the highest ratio about 5:1.

The normal shape of the total software staff profile will show

growth through the design phases, peak during coding, and testing

34

phases, and then graaually taper off as integration tests are successfully

completed. The shape of the experienced personnel profile should be

moderate during the initial stage of development, dip slightly during

CSU development, and then grow somewhat during testing.

300 "
250 TOTALSTAFF-
-200

100 1-EX7PERIENCED STAFF
0-50

-1 0UNPLANNED LOSSES'
-20

15 16 17 1819 202122 23 242526

i Planned CONTRACT MONTH
,-,an Actual

Figure (8): Software Personnel Indicator, (Adapted from ESD,
1988)

Rules of Thumb.

(1). The time required for software development depends on

the staff-months delivered.

(2). Understaffing is an early indication of potential schedule

slippage.

(3). Adding manpower to a late project will seldom help

schedule problems.

(4). A program that is maintaining the staffing profile, but is

experiencing a high personnel turnover rate, is not maintaining needed

continuity among the design and implementation staff.

35

(5). Initial staffing levels should be at least 25 percent of the

average staffing level.

4. Requirements and Design Stability indicates the "maturity"

of the software requirements and design. It measures the number of

requirements impacted by engineering change proposals (ECPs) and

software action items (SAIs). Also, the number of SAIs can be tracked

for each CSCI to assess the volatility of its design. The intent is to show

the degree to which the software requirements have been defined using

quantitative engineering measures to allow testing of those

requirements. A lack of firm and well-defined requirements leads to

uncertainty and changes that result in cost growth and schedule delays.

4a. Reguirements Stability depicted in Figure 9, tracks the total

number of software requirements as well as the cumulative number of

changes to those requirements. Changes in the number of

requirements, additions and deletions, directly impact the software

development effort. Changes are expected in the early stages as details

of the system design are defined and understood. At some point the

software requirements must be "frozen".

There is an indication that this is occurring starting at contract

month 23 in Figure 9. It will be assumed that this is appropriate for this

development effort, but the longer this takes, the greater the impact on

cost and schedule. More specifically, changes after the "critical design

review" will probably have significant schedule impact, even if it is a

requirement deletion.

36

2000 - 400

1500 -40 300

5 1000 " 200

500- 100

15 16 17 18 19 20 2122 23 24 25 26

Contract Month

m TOTAL REQUIREMENTS

A A 'A CUMULATIVE CHANGES

Figure (9): Requirements Stability Indicator; Software

Requirements Changes, (Adapted from ESD, 1988)

4b. Design Stailit can be measured by tracking the number

of Software Action Items (SAI) resulting from design reviews. A SAI is

defined as any discrepancy, clarification, or requirements issue that

must be resolved. Theoretically, they represent inconsistencies

between the requirements and the design or within the design itself that

are discovered in the formal design review process. The plot of SAIs is

expected to rise at each review (contract month 19) and then taper off

exponentially. Note how Figure 10 depicts this.

Development efforts with clear and complete specifications will

tend to experience less of a rise at each review, as will ones where the

review process is inadequate. A well managed project will show a rapid

"rate of decay" of these action items indicating ability to resolve problem

issues.

37

100

75

U)

cio 50 ..

25 4

I I I I i i i I i I I

15 16 17 18 19 20 2122 23 2425 26

Contract Month

-OPEN SAls
NEW SAIs

Figure (10): Software Requirements Stability: Software Action
Items, (Adapted from ESD, 1988)

5. Cost/Schedule Progress tracks variances in the ability to

maintain cost budgets and schedule plans. It uses data from a project's

formal accounting system. A common system in government work is

C/SCSC mentioned earlier in the chapter. This accounting/audit system

is rather complex. Given this, there will be only a cursory attempt to

describe the system. Those needing further clarification or detail should

consult the previously mentioned references along with other

government cost reporting and financial policy documents.

The C/SCSC concept measures work accomplished or "earned

value" to have a better feel for true project progress. This is used

because being at a certain point in schedule doesn't mean the planned

amount of work has been actually performed. Similarly, if half of the

budget has been spent, it doesn't mean half of the project is complete.

38

Earned value integrates cost and schedule plans with actual delivered

work/function. This is so actual project costs are compared with
meaningful values (the planned or budgeted value) for the work that has

been accomplished, rather than with the work scheduled to be

accomplished.

In doing this, a deviation results from accomplishing more or

less (or different) tasks than were originally scheduled in a given time

period. This separates this type of deviation from one that comes from

the measurement of efficiency of performance for the work that is

actually done.

Figure 11 graphically depicts the "earned value" approach.

The budgeted cost of work performed (BCWP) is defined as the amount

originally budgeted to do the amount of work that is now complete. The

budgeted cost of work scheduled (BCWS) is the budgeted cost of work

that was scheduled to be complete by now. The actual cost of work

performed (ACWP) is the amount that was actually spent to accomplish

the currently completed work.

From these values, the cost variance (BCWP-ACWP) and

schedule variance (BCWP-BCWS) are used to calculate the Cost

Performance Index (CPI) and the Schedule Performance Index (SPI).

The CPI (BCWP/ACWP) is a measure of efficiency or productivity (i.e.

cost performance). The SPI (BCWP/BCWS) is a measure of production

or schedule performance. If the ratio for either index is greater than one

then productivity and/or production is good.

39

CONTRACT BUDGET BASE

AW COST VARIANCE =
BCWP - ACWP

SCHEDULE VARIANCE =
BCWP - BCWS

15 16 17 18 19 20 2122 23 24 25 26

Contract Month

Figure (11): Cost/Schedule Indicator, (Adapted from AFSCP

800-43)

6. Software Development Tools indicator assesses whether

the tools necessary to complete the software development process are

available to the developer. Such tools may include testing programs,

external environment simulation programs, compilers, and management

information systems. It shows the degree to which the developer has

established the.software engineering and test environments to support

the development process.

The metric used in this indicator, as shown in Figure 12, is the

number of months available from when the software tools are required to

when the tools are expected to be delivered. It is reasonable to expect

some tools will be necessary. The indicator should show "positive

margin" (tools 1 and 3) between when each tool is needed and when it

will be available. If there is negative margin (tools 2 and 4), alternative

40

development approaches may need be identified in the risk

management process.

TOOL 1 A POSITIVE MARGIN

TOOL 2

TOOL 3

NEGATIVE MARGINTOOL 4

I I I I I I I i I I I

15 16 17 18 19 20 2122 23 24 25 26

Contract Month

/% REQUIRED DATE

A AVAILABLE DATE
Figure (12): Software Development Tool Indicator, (Adapted

from AFSCP 800-43)

Other Notes on SMI Usage

The previous section detailed six basic software management

indicators and their supporting metrics. They represent a suite that is

still evolving and adapting to the rapidly changing software development

environment. It is imperative that they be customized or "tailored" to

each project's dynamic management information needs.

Customizing of the basic suite may involve expanding or

reducing metric measurements. A project manager may want to track

utilization of both development and system computer resources, different

types and skill levels of personnel, the length of time SPRs remain open,

or other project unique attributes. What is essential is that the project

41

manager understand not only his project's information needs, but also

what the information means.

The application and interpretation of SMIs is not clear cut and

easy to "cookbook". The indicators must be compared and contrasted

with each other to verify suspected trouble areas. For instance, if the

Development Progress indicator shows trouble in the integration phase,

the Software Manpower indicator may show an abnormal unplanned

loss rate or shortage of experienced staff. Another situation might show

the testing phase schedule delayed. The reason for this may be traced

with the Software Development Tool indicator as a delay in the

development of testing tools.

The point is that indicator metric measurements are all coming

from the same development "system". Therefore, the indicators are

interrelated in their causes and thereby their analysis and interpretation.

Problems arise from the effects of the previously discussed risk drivers.

Their impact will hopefully be manifested in SMI reports so that the

information can be fed into the software risk management system shown

in Figure 4 found in Chapter I.

The sophistication of the SMI reporting system will depend on

the complexity of the project and the ability of the project staff to

administer it. A simple project may require only a few indicators, where

a complex project will require more extensive usage.

The nature of the metrics is such that they require a prcect

manager to predict and report expected work difficulties selected from

events which have already occurred. Given this, the "fresher" the data,

42

the sooner problems can be identified and resolved. The best systems

will not keep project managers out of trouble, but will keep them from

being surprised when trouble comes.

In this chapter the concepts and problems related to software

management indicator usage were discussed. A fairly detailed

description of a suite of indicators, gathered and developed by the U.S.

Air Force, was presented as a "model" of an "early warning system" for

software development risk management. The next two chapters will

outline a study that was done to examine current SMI use in the defense

industry.

CHAPTER III

EMPIRICAL STUDY

An exploratory empirical study was undertaken to qualitatively

explore the implementation of Software Management Indicators in the

defense industry. From what can been ascertained from preliminary

research, little formal analysis and follow-up evaluation of SMI

implementation has been done. One exception is a working paper by

MITRE corporation for the USAF Electronic Systems Command (ESD-

WP-27367, 1987). The report addressed the effectiveness of a set of

indicators/metrics used on nine ESD projects. The results were used to

improve the ESD indicators presented in the previous chapter.

Goals for this research presented in this study were to:

1. Seek evidence that supports or refutes the use of Software

Management Indicators to help manage and improve the software

development process.

2. Solicit comments relating to SMI policy and implementation

issues, tangible and intangible benefits, problem areas, and

recommendations for change.

3. Gain a better understanding and appreciation of the 'trials

and tribulations' of managing large scale software development and

acquisition and how the use of SMIs might apply.

4. Determine future research needs.

44

Data Collection Methodology

An interview process consisted of identifying and contacting

government and defense contractor authorities who have managed

large-scale detense software development projects and have used

SMIs. Note the four contact types in Figure 13. They reflect the level of

management/usage in which the contacts were found. Note also the

types of organizations contacted. They represent the range of

organizations found in the defense software industry.

Face-to-face and telephone interviews were conducted with

these contacts and focused on the topics outlined in Appendix A. The

topical discussions were purposely "open-ended" to allow an

unstructured free exchange of information. This format was used

because of the wide range of experience with the use of SMIs, and

because of the exploratory/discovery nature of the study. As a result of

this format, all of the topics outlined in Appendix A were not always

covered completely and typically led to other pertinent and related

information. The limitations of this data gathering methodology and

approach will be addressed next.

Limitations of the Study

There were a number of limitations to gathering and compiling

information on the implementation and use of SMIs. They include:

1. SMI use is immature, varied, and relatively new. With this

newness, historical project data reflecting SMI use is lacking. Where

45

CONTACT TYPE
Systems/Soft- Project Contract

ORGANIZATION ware Engineer Technician Manager Admin/Audit

Defense Systems
Management College, 3
Software Engr Institute

AF Special Project 4
Offices (SPOs)

Air Force Systems 2
Integration Offices

Defense Contract Admin
Agencies (Defense Logistics 6
Agency, AF Plant Representative
Office)

Defense Contractors 5 3 3 1

Dept of Defense, AF
Systems Command, and 5 4 4
Product Divisions

Figure (13): Summary of the Empirical Study Interviews,
Showing the Distribution of Contact and Organization Types and

Numbers of People Interviewed.

SMIs were being used there was wide variation in the degree

to which they were implemented. Use in a formal sense is very limited

and immature and where present, is rather informal. This immaturity

and variation made it difficult to correlate and verify use between similar

organizations and types of projects.

2. Data gathering and scooe was constrained by resources. In

itself, the interview process was difficult to manage. The scope was

limited to government and defense related organizations as previously

indicated in Figure 13. Physically contacting these people either by

46

phone or in person consumed much more time and resources than

initially estimated. The result was a limit to the number of and the

degree to which interviews were conducted. Just identifying those who

have used or are specifically familiar with the formal Air Force SMI

concept, proved more difficult and limited than originally anticipated.

Some of the difficulty encountered may reflect a firm's desire not to

discuss management systems that may be giving them a competitive

edge.

3. Data gathering was inconsistent and discontinuous. When

interviewees were finally contacted, interviews were conducted at their

whim. It was particularly difficult to get many individuals to spend any

length of time discussing the subject matter. The most knowledgeable

contacts were typically very busy and had little time to "chat" about the

successes they were having. Because of this and of the partial

familiarity with SMIs, many times it was very difficult maintaining

continuity in the interview data gathering process. Therefore much of

the information presented is fragments of conversations and comments

that have been pieced together.

Given this, it is hard to trace many observations to unique

sources. Though not gathered in a very rigorous manner, the

observations have notable value in qualitatively yielding a "conventional

wisdom" view of SMI use and success. This "conventional wisdom"

view will be presented in the next chapter. Future research may try to

quantitatively verify these observations.

47

4. The observations are heavily biased toward those

organizations who use SMIs'. This study purposely targeted

organizations that were identified as users of SMIs. Identifying

organizations using SMIs was difficult enough, trying to find

organizations who may have tried a formal SMI approach and has since

found them nuseful proved impossible. The later case is once again

due to the immaturity of SMI use; many firms have barely begun using

them and therefore have not had time to evaluate the results.

5. Opinions of decision makers were difficult to obtain. SMIs

are intended for top management's use and basically present a project

management overview from which they make critical decisions. Even

so, it was difficult to find top managers familiar with SMIs at any depth.

The typical level of significant knowledge and insight was found in a

non-management, "quality control" type function that was fairly technical

and production oriented. Viewpoints at this level typically reflect an

interviewee who generates the SMI data, but does not make decisions

from it. SMIs were devised to help top managers make project

management control decisions. But, as observed, it was almost as if

management wanted SMIs used because they were "supposed to"

(because of government suggestions), without understanding why.

The following chapter will synthesize the results from this

exploratory data collection process.

CHAPTER IV

RESEARCH FINDINGS

This chapter will present a summary of exploratory research

findings. An intuitive, "Conventional Wisdom", summary will be offered,

as will more "hints" and suggestions for SMI implementation and usage.

This Conventional Wisdom approach merely represents the

observations and information gathered in research as they generally

seem to apply to the various issues associated with SMI concepts and

usage.

SMI Conventional Wisdom

1. When used, SMIs provide greater visibility and control of the

software development process. Comments gathered in interviews with a

variet y of government authorities suggest many defense contractors

don't have an effective system to systematically manage software

development. Surprisingly, even modest use of software engineering

and structured development techniques by some government

contractors was notably lacking.

Tangible cost and benefit data is difficult to collect. Generally

speaking, even though collection and processing indicator data is costly,

most people interviewed seem to feel the benefits received were worth

the cost. The most common intangible benefits cited by project

managers was, "at least now I know what my people are doing" and

49

"they may not be perfect, but things are certainly better than what we had

before". By being required or "coerced" into using SMIs, many

contractors have come to realize their value.

Putting dollar amounts on the value of these intuitive feelings,

like most information systems, may prove impractical. If the increase in

the use and development of costly automated indicator control systems

is any indication, then there must be some cost effective benefit being

derived.

From another viewpoint, when the indicators are used to
"avoid" expensive cost risk drivers, it only takes "dodging one bullet"

before the cost is quickly justified. This is the "pay me now or pay me

later" philosophy at work.

2. The concept of software risk management is not well

I. u . Throughout this study, risk management and quality control

were used as a conceptual and practical framework for SMI use. In

discussing the use of SMIs in relation to this framework, not one contact

indicated a "formal" systematic use of the indicators in a risk

management process. Though recognized as a method to manage

software project management risk, no well developed planning and

control risk management system that methodically included them as

input was found. There was evidence in a couple of organizations that

this level of "maturity" was being approached, but still had a way to go.

3. SMI use is in an "early adopter" stage of implementation

The relative immaturity of incorporating the indicators into a formal risk

management process seems to reflect the relative immaturity of the

50

indicators. Only recently (1980s) have defense contractors begun to

formally and systematically implement software "management"

indicators. Certainly there have been "pioneers" in their use (e.g. TRW

Systems), but until recent years have they only "diffused" to the "early

adopters".

Exposure to the indicators seems to be hampering their

diffusion. The number of people who know about, or better yet, know

how to use SMIs is relatively small. Most organizations interviewed

(government and industry) had only a very select and minute staff

(many times one or two deep) that had any practical knowledge of the

gathering, use, and interpretation of indicator data.

In most cases discussed, training and use of the indicators is

bottom-up vs. top-down. As devised, the fundamental use of the

indicators was for "top" management to get a broad overview of their

scoftware projects. This is not always the case. It may be that the

managers don't know what they need in the way of software

development control feedback. "They don't know what they don't

know". A common comment was that systems level project managers

don't know "anything" about software, and aren't about to micromanage

it. They will continue to expect the software will just "show up" when it is

needed to integrate into the overall system.

Given the trouble in making contacts, there may be a question

of whether these companies have better, "proprietary", methods they use

and aren't willing to discuss. If so, research findings did not conclusively

verify this. It can be said that TRW Systems, a pioneer in software

51

metrics, is actively using SMIs that closely conform to the Air Force

model.

4. Managers who are now using SMIs are doing so

enthusiastically. Most of those who are now adopting the indicator

approach seem to be "trying them on for size" after hearing of their

benefits and use from the "pioneers". Generally, contractors and

government project managers are a bit skeptical about having to collect

more costly data that may be worthless or even "sensitive" in the hands

of industry competitors. Those who are now using them regularly are

doing so carefully, but enthusiastically.

This study did not attempt to estimate the percentage of

defense contractors using "formal" SMIs. Intuitively, it's felt the

percentage of contractors using SMIs would be less than 30 percent.

5. SMIs must be implemented in a proper environment. The

use of the SMI approach "flies in the face" of the way many government

contractors have previously done business. The "trust me" syndrome

present in government procurement is well ingrained (and probably

more so in the commercial sector). SMIs, when assumed effective,

document contractor performance. With increased public and

Congressional pressure to account for contractor performance, there is a

tendency for contractors to avoid and resent producing potential

"evidence" of poor performance. Also, with more and more government

contracts taking a harder look at past performance, contractors will have

greater concern for how "follow-on"use of SMI data will impact them.

_____________________ 1

52

Projects are far more vulnerable to dishonesty than the

ongoing operations. Standard operations are characterized by

considerable knowledge about expected system performance. When

the monitoring system reports information that deviates from

expectations, it is visible, noteworthy, and tends to get attention.

In the case of many projects, expectations are not so well

known. Deviations are not recognized for what they are. The project

manager is often dependent on team members to call attention to

problems. To get this cooperation, the "bearer of bad news" is not

punished; nor is the "admitter-to-error" executed. On the other hand, the

"hider-of-mistakes" may be shot with impunity (Meredith and Mantel,

1985, p.291).

There is some tendency for project monitoring systems to

include an analysis directed at the assignment of blame. While the

managerial dictum "rewards and punishments should be closely

associated with performance" has the ring of good common sense, it is

actualiy not goca advice (iviereoith and Mantel, 1985, p. 292). In other

words, rewards and/or punishment based on a measure of performance

may prove to have a negative effect on potential productivity.

All of this is to say, an environment that allows a myopic, short-

term viewpoint is not apt to motivate people to better performance. The

practice is apt to result in lower expectations. If achievement of goals is

directly measured and directly rewarded, a tremendous pressure will be

put on people to understate goals and to generate plans that can be met

or exceeded with minimal risk and effort.

53

In this study, the programs that were held as the 'finer"

examples, were the ones in which the climate allowed for short term

problems to be resolved without punishment for those responsible. A

"long term" view was taken in which "bad" feedback on project progress

was used to stimulate corrective action and not to "crucify" the project

manager for not doing his job. This environment is typical of that found

in many of today's more successful companies.

Also present in these environments was an independent group

who gathered and reported indicator data. The effect of this approach is

that the group serves both the project managers and the developers.

This approach is an attempt to promote integrity, prevent bias, and

expedite reporting of "bad" news. in operation, the group would brief the

developer project manager before briefing top management. This not

only keeps the development staff better informed, but also gives them

time to respond to problems that are being identified.

This section presented various observations and findings from

the exploratory research study. The next section will offer some hints on

implementing SMIs found in this research.

Implementation Hints

1. The use of SMIs can give a nroiect manager a false sense of

s.euiy.. By strictly looking at SMI results a project manger may
"assume" that all - well with the development process. This may be, but

this assumes the requirements were right in the first place.

If there is one over-riding implementation issue and problem, it

has to be lack of a stable, well-defined requirements. This is nothing

54

new. Requirements analysis is the most crucial step in the development

of a software system. There must be a sufficient requirements baseline.

If not, a perfectly managed development process will only produce a

perfectly built system that doesn't meet the user's true needs.

2. SMIs provide the early feedback necessary to re-assess

planning and yield "converaence" between estimates and reality. A

project management baseline is only as good as the tools used to

develop it. Despite estimating tools such as COCOMO (Boehm, 1981),

better tools and approaches for developing project estimates need

development. This problem is well recognized, with improvements

actively being pursued. One thing that must be remembered, no matter

how good the estimate, there is still some percentage of uncertainty that

results from software risk drivers. Theoretically, as a project gets closer

a planned objective, the better the understanding of the project's risk

and estimates to completion. It must be assumed that at project

completion the estimate will be perfectly correct. Project management

must continually re-assess and manage this project risk.

3. As implemented. the SMIs aren't overwhelming with the

amount of data Droduced. and this should remain a goal. One of the

more distressing trends in project management is the tendency to

overstress control (Meredith and Mantel, 1985). Various types of project

management information systems have been developed recently which

can provide an abundance of data concerning a project. Many of the

information systems extend through many management levels and

require the project participants to report a large amount of data.

55

When questioned whether SMIs may be overstressing control,

most people felt it wasn't. Most felt it was control that has been needed,

and that more appropriate control may help the software management

problem.

4. SMIs should be and need to be "tailored" to each proiect's

ne . Another trend is the current tendency to rely heavily on

complicated, sophisticated project management systems. There is a

very real danger that project managers can become so preoccupied with

the system that they fail to exercise enough personal management of a

project (Cleland and King, 1983). Risk management and control is of a

personal nature, so it is important that project managers use techniques

that reflect their personality and are consistent with the complexity of the

project.

5. The mechanism that allows the sharing of changes in and

development of new techniques should be developed and maintained.

Organizations already using some form of indicators tend to promote

and offer some they use "internally". This is fine and has been the

source of many indicators that have been "adopted" by the Air Force.

There is a need to accommodate and incorporate virtues of the variety of

indicator "systems" that are evolving. Maybe a "user group" of sorts

could be created.

6. Implementation of SMIs should reflect a conservative

viewpoint. Gilbreath (1986) warns of the improper use of project data.

He states that no matter how many additional channels of

communication that are made available and accessible, the time

56

available to examine the data remains the same. His perception is that

as more data is available to more and more people the more susceptible

it is to misunderstanding, misuse and confusion. Like any use of data,

he argues, data has a very special role, but its role should be limited and

kept in perspective. Sometimes more or better data has little or no value

as information.

Gilbreath's professions basically warn to "Keep It Simple

Stupid". Projects are complex entities that have to be managed with

complexity. For the "normal" project manager to comprehend the status

of his project, he needs the minimum of information versus maximum..

7. Approach implementation like a "real" proiect. After nearly a

decade of professing the virtues of structured development techniques,

Ed Yourdon (1979) was moved to write "The Second Structured

Revolution". His dissertation is an attempt to create "born again"

developers who would actually use the structured techniques. In his

opinion the failure of the "first" structured revolution was due to

management. Observations and lessons learned from his analysis may

prove worthwhile when looking at the implementation of Software

Management Indicators.

In looking at why the "first" revolution hadn't proved successful,

he cited: inadequate selling of the techniques; inadequate training; and

inadequate management and follow-through. The solution he

advocates is to approach implementation the same way a "real" project

should be approached. Essentially he is suggesting that improving

software projects is a project in itself.

57

What's needed, he suggests, is a "dignified" selling effort, and

formal analysis, design, implementation and testing activities. Each

level within the organization must be approached differently. Top

*: management needs economic justification. Middle management will

* want to know how much time and how many people it will take., The

technicians will be suspicious of another management program. The

best approach may be a top-down approach.

Analysis activities are used for what basically amounts to a

* feasibility study. Questions such as: do we have a management

problem?; what is the nature of the problem?; is it politically sensitive?;

and what are the risks of using the indicators?; should be asked. The

Desion phase is the planning phase. Here questions might be: which

indicators should be used?; which project should they start on?; how dc

we manage the implementation process?; and how do we measure the

impact?.

Here it is suggested to limit the number of techniques

introduced at once; to select a moderate sized project; to groom some

"gurus"; and to establish a group that coordinates introduction and

training of the new techniques. Implementation should be considered

an evolutionary process. New indicators should be introduced and old

ones eliminated as needed. Testing activities are used to continually

monitor the worth of the indicators and to recommend changes.

The most important point made by Yourdon is that the

structured techniques are not "magic". This is most true for Software

Management Indicators. As with structured techniques, the indicators

58

represent "standardized common sense". To effectively implement

SMIs, there must be a systematic approach.

This chapter presented pertinent findings from the exploratory

research conducted for this project. Several hints on SMI

implementation and usage were offered. The next chapter will briefly

summarize these findings and offer some future research directions.

CHAPTER V

SUMMARY AND CONCLUSION

This study suggested the need for an "early warning" system to

help manage the risk inherent in software development project

management. The fundamentals of metric measurement and indicator

use were presented as foundation for the use of software management

indicators as such a system A suite of Software Management Indicators

currently implemented by the U.S. Air Force was described to serve as a

model of the "state of the art" in software indicator management.

In this chapter pertinent findings will be summarized and then

some recommendations for future studies will be discussed.

Summary of the Research Findings

As software project managers consider implementation of

SMIs, they may want to reflect on some thoughts from Robert Pirsig's

(1974) Zen and the Art of Motorcycle Maintenance:

To speak of certain government and establishment institutions
as the system is to speak correctly, since these organizations are
founded upon the same structure conceptual relationships as a
motorcycle. They are sustained by structural relationships even
when they have lost all other meaning and purpose. People arrive
at a factory and perform a totally meaningless task from eight to five
without question because the structure demands that it be that way.
There's no villain, no "mean" guy who wants them to live
meaningless lives, it's just that the structure demands it and no one
is willing to take the formidable task of changing the structure just
because it is meaningless.

60

But to tear down a factory or to revolt against a government or
to avoid repair of a motorcycle because it is a system is to attack
effects rather than causes: and as long as the attack is upon effects,
no change is possible. The true system, the real system, is our
present construction of systematic thought itself, rationality itself,
and if a fautory is torn down but the rationality which produced that
government are left intact, then those patterns will repeat
themselves in the succeeding government. There's so much talk
about the system. And so little understanding.

There are many reasons why the management of the software

development process is difficult. It is imperative that systems developers

continue to examine the "structure" underlying the software development

"system". Better "understanding" of this structure is necessary so that

new systematic and rational approaches to management can be

developed. The use of Software Management Indicators is one such

approach.

Requirements definition is still the biggest problem facing

software development managers. The system must be understood

before it can be modeled and changed into a software system. SMIs do

provide greater visibility and control into this software development

process, but are not the total means to the end, just a part of it. Primarily

they are used merely to stimulate further management action within the

context of software risk management.

SMIs are in an "early adopter" stage of acceptance. Initial use

of SMIs has been driven by contractual requirements and/or effective

selling by the government. Contractors are enthusiastically embracing

the SMI concept. After getting past the initial phases of implementation,

they seem to working to improve the fundamentals put forth by the Air

Force. Use is not just for the benefit cf the government. The contractors

61

interviewed have found they enhance their internal management

process.

Incorporation of SMIs into a formal software risk management

process was not found. Findings indicate the indicators are only used in

an informal risk management sense.

Format is not important. Customizing of SMIs to unique project

needs is key. Not all indicators are always appropriate. Better

automation of the SMI process is a must. Though beneficial, collection,

analysis, and reporting SMI data is costly and time consuming.

Continued assessment and enhancement of current indicators

and further incorporation of new ones must be done systematically. A

process of gathering feedback, and "sharing" information may be

needed.

SMIs are specifically looking at the quality of the process of

developing software, they must be used in conjunction with other

techniques that look at the quality of the software product. In essence

this is a "Total Quality Control" approach.

Recommendations for Future Research

Future SMI work may broaden to include exploration of usage

in the commercial software development environment. Further, broader,

more detailed and quantitative work is certainly warranted in the

defense business given there is greater resources and better access to

sources of historical data from SMI use. Access to such sources will be

administratively and logistically difficult and costly for both environments.

62

It is recommended that there be authority and sponsorship from a

noteworthy organization that gives greater incentive to those

cooperating in time-consuming research.

More formal incorporation of the SMIs into the software risk

management process should be studied. The primary formal use of

SMIs is in the process, but is currently very immature. Better

understanding of the risk management and "total quality control"

approaches in software development are sorely needed.

This work has merely "scratched the surface" of work needed in

software project management. The challenge is for software

development management to acknowledge and to continue the

evolutionary process needed not only to improve the quality of the

development process, but also its management. It is hoped future

researchers and developers will recognize and accept this challenge, so

to better manage the risks of our profession.

REFERENCES

AFSCP 800-45, Air Force Systems Command and Air Force Logistics
Command, Software Risk Abatement, Andrews AFB, DC, unpublished
draft.

AFSCP 800-43, Air Force Systems Command, Software Management
Indicators, Department of the Air Force, Andrews AFB, DC, January
1986 and unpublished draft revision.

Birrell, N.D. and M.A. Ould, A Practical Handbook for Software
vel9gmnt, Cambridge Univ. Press, Cambridge, 1985.

Boehm, Barry W., et al., "Quantitative Evaluation of Software Quality",
Proc. 2nd International Conference on Software Engineering, October
1976, pp. 592-605.

Boehm, Barry W., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

Boehm, Barry W., et al., Characteristics of Software Quality, North
Holland Publishing Co., New York, New York, 1978.

Cleland, David I., and William R. King, Systems Analysis and Proiect
Manaaement, McGraw-Hill, New York, NY, 1983.

Cooper, J.D., "Corporate Level Software Management," IEEE
Transackions on Software Engineering, Vol. SE-4, No. 4, July 1978,
quoted by Tarek K. Abdel-Hamid and Stuart E. Madnick, "Lessons
Learned from Modeling the Dynamics of Software Development",
unpublished paper, Aug 1988.

Davis, Bob, "Costly Bugs: As Complexity Rises, Tiny Flaws in Software
Pose a Growing Threat", Wall Street Journal, January 29, 1987.

DSBTF: Defense Science Board Task Force, Regort of the DSBTF on
Military Software, Office of the Under Secretary of Defense for
Acquisition, Washington, D.C., September 1987.

Demarco, Tom, Controlling Software Proiects--Management.
Measurement. and Estimation, Yourdon Press, New York, NY, 1982.

64
Denicoff, Marvin, and Robert Grafton, "Software Metrics: A Research
Initiative", in Perlis, A., et al., (eds.), Software Metrics: An Analysis and
Evaluation, MIT Press, Cambridge, Massachusetts, 1981, pp.13-18.

DOE: Department of Energy, DOE/CR-0015, Cost and Schedule Control
Systems Criteria for Contract Performance: Imlementation Guide, May
1980.

ESD-TR-88-001, Air Force Systems Command; Electronic Systems
Division, Software Manaoement Indicators, Department of the Air Force,
Hanscom AFB, Massachusetts, May 1988.

ESD-WP-27367, Air Force Systems Command; Electronic Systems
Division, An Initial Evaluation of Metrics Reporting on ESD Programs,
Department of the Air Force, Hanscom AFB, Massachusetts, May 1987,
p. 9.

Giib, Tom, Software Metrics, Winthrop Publishers, Cambridge,
Massachusetts, 1977.

Gilbreath, Robert D., Winning at Proiect Management, Wiley, New York,
New York, 1986.

Jones, Capers, Proaramming Productivity, McGraw-Hill, New York, New
York, 1986, pp. 5-6.

Juran, Joesph M. and Frank M. Gryna, Jr., Quality Planning and
Analysis, McGraw-Hill, New York, New York, 1980.

Kosarago, S., and H. Ledgard, "Concepts in Quality Design", National
Bureau of Standards Technical Note 842, August 1974.

Meredith, Jack R., and Samuel J. Mantel, Proiect Management: A
Managerial Approach, Wiley, New York, New York, 1985.

Orr, Ken, "Managing the Software Crisis," Comouterworld, July 15-22,
1985.

Page-Jones, Melir, Practical Proiect Management: Restoring Quality to
DP Proiects and Systems, Dorset House, 1985.

Pirsig, Robert, Zen and the Art of Motorcycle Maintenance. Bantam, New
York, New York, 1974.

Rubey, R., and R. Hartwick, "Quantitative Measurement of Program
Quality", Proc.23rd National Conference. ACM, 1968, pp. 671-677.

65
TRW-SS-73-09, Boehm, et al., Characteristics of Software Quality, TRW
Systems, One Space Park, Redondo Beach, California, 1973.

Weinberg, G.M., and E.L. Schulman, "Goals and Performance in
Computer Programming," Human Factors, 1974, 16(1), pp. 70-77.

Yourdon, Edward, "The Second Structured Revolution", Yourdon Inc.,
New York, New York, 1979.

Zmud, R. W., "Management of Large Software Development Efforts," MIS
Qurtet~y, Vol. 4, No.2, June 1980, pp. 45-56.

APPENDIX A

INTERVIEW TOPICS

Captain Court C. Allen
USAF/University of Colorado

Master of Science; Management
Science and Information Systems

Thesis: Software Management Indicators: Managing the Risk of
Software Project Management

INTERVIEW GOALS:

1. Seek evidence that supports or refutes the use of Software
Management Indicators (SMIs) to help manage and improve the
software development process.

2. Solicit comments relating to Software Mangement Indicator
policy and implementation issues, tangible and intangible benefits,
problem areas, and recommendations for change.

3. Gain a better understanding and appreciation of the 'trials
and tribulations' of large scale software development and
acquisition.

INTERVIEW TOPICS:

1. A Software Crisis has been declared. With the advent of software
engineering principles and techniques, the technical methods of
software development have improved notably. Unfortunately,
management methods have not.

o Do you share this view ? If so, what are some of the
management problems as they tend to apply to the DOD software
acquisition process.

III

67

2. Many 'large-scale' DOD acquisition programs use 'traditional' project
management techniques (WBS, PERT/CPM, Earned Value, etc.).

o Is it your experience that these techniques are being used
to manage the software development process?

o As they apply to software development, are these
techniques appropriate? Is there a better way?

3. By definition an indicator is a sign or symptom of something else.
Software Management Indicators have been offered as a means to gain
greater visibility and control into the software development process.

o How would you define visibility and control?

o In your experience do these indicators offer this?

o Are they just another example of overstressing control at the
expense of productivity or is productivity ultimately enhanced?

o Are we collecting meaningless data? Are we overcollecting
data?

4. In Tom DeMarco's book, Controlling Software Proiects, he offers 'The
Metrics Premise': Rational, competent men and women can work
effectively to maximize any single observed indication of success. He
says if you indicate some clear quantitative definition of success, (e.g.
program size, data space used, completion time, etc.) and if you
measure and track progress toward that success, project members will
align themselves with the stated goals.

o Do you find this to be true? Do contractors tend to use two
'books' when reporting project status; one internal and one for the
government?

o Do production/development staff workers resent tracking
their progress?

5. Risk management has been deemed essential to dealing with
uncertainty inherent in management of large projects. It seems
important that a risk management strategy program be established early
and continually managed throughout a project's lifecycle. Risk
monitoring requires that risk be recognized and acted upon if
discovered.

o Is formal software risk management actively used in your
software development projects?

68

o Do you feel SMIs are an effective tool in the risk
management process?

o Typically, are results from indicators directly tied to
contingency plans developed through the risk management
process? If not, how do you manage projects where data indicate
they may be going bad.

6. SMIs offer an 'executive' overview of project status. As a rule, do
workers at the production level (systems analysts, designers,
programmers, etc) have access to the indicator data concurrently for
prospection or is it typically retrospectively late? In other words, is the
data timely enough to allow changes to be made before it's too late?

7. Collecting and reporting data on the progress of a particular

contractor's project can go overboard.

o Is it felt the government is asking for too much data?

o Government contracting is highly competitive. How
sensitive is this data in terms of what a competitor can find out
about a fellow contractor? In terms of what the government finds
out about a contractor's internal management?

o Is data usually extracted from an existing 'internal' project
management information system or is it collected ad hoc for the
government?

8. Data collection, analysis, and reporting can be very costly.

o What are some of the tangible and intangible benefits of
incorporating such effort?

o Can these benefits be measured?

9. What are some of the policy and implementation issues that you
perceive with the use of these indicators? Other problems?

10. In general, do have any more comments or recommendations about
the use of Software Management Indicators? About the management of
software development projects?

